Moduli Spaces and Invariant Theory

نویسنده

  • JENIA TEVELEV
چکیده

A moduli space is a space that parametrizes geometric objects. For example, elliptic curves are classified by the so-called J-invariant, so the moduli space of elliptic curves is a line (with coordinate J). More generally, there exists a moduli space, calledMg , which parametries all projective algebraic curves of genus g (equivalently, all compact Riemann surfaces of genus g). The Jacobian of a Riemann surface is a moduli space that classifies line bundles on a fixed Riemann surface. The study of moduli spaces is an old branch of algebraic geometry with an abundance of technical tools: classical invariant theory, geometric invariant theory, period domains and variation of Hodge structures, stacks, derived categories, birational geometry, intersection theory, tropical geometry, etc. But we believe that a lot can be learned by studying examples using minimal machinery, as a motivation to learn more sophisticated tools.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometric Invariant Theory Construction of Moduli Spaces of Stable Maps

We construct the moduli spaces of stable maps, Mg,n(P , d), via geometric invariant theory. This construction is only valid over Spec C, but a special case is a GIT presentation of the moduli space of stable curves of genus g with n marked points, Mg,n; this is valid over any base field. Our method follows that used in the case n = 0 by Gieseker in [6], to construct Mg, though our proof that th...

متن کامل

Good Moduli Spaces for Artin Stacks

We develop the theory of associating moduli spaces with nice geometric properties to arbitrary Artin stacks generalizing Mumford’s geometric invariant theory and tame stacks.

متن کامل

Maximal Surface Group Representations in Isometry Groups of Classical Hermitian Symmetric Spaces

Higgs bundles and non-abelian Hodge theory provide holomorphic methods with which to study the moduli spaces of surface group representations in a reductive Lie group G. In this paper we survey the case in which G is the isometry group of a classical Hermitian symmetric space of non-compact type. Using Morse theory on the moduli spaces of Higgs bundles, we compute the number of connected compon...

متن کامل

On Atkin-Lehner correspondences on Siegel spaces

‎We introduce a higher dimensional Atkin-Lehner theory for‎ ‎Siegel-Parahoric congruence subgroups of $GSp(2g)$‎. ‎Old‎ ‎Siegel forms are induced by geometric correspondences on Siegel‎ ‎moduli spaces which commute with almost all local Hecke algebras‎. ‎We also introduce an algorithm to get equations for moduli spaces of‎ ‎Siegel-Parahoric level structures‎, ‎once we have equations for prime l...

متن کامل

N = 2 topological gauge theory, the Euler characteristic of moduli spaces, and the Casson invariant”, Commun.Math.Phys

We discuss gauge theory with a topological N = 2 symmetry. This theory captures the de Rham complex and Riemannian geometry of some underlying moduli spaceM and the partition function equals the Euler number χ(M) of M. We explicitly deal with moduli spaces of instantons and of flat connections in two and three dimensions. To motivate our constructions we explain the relation between the MathaiQ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011